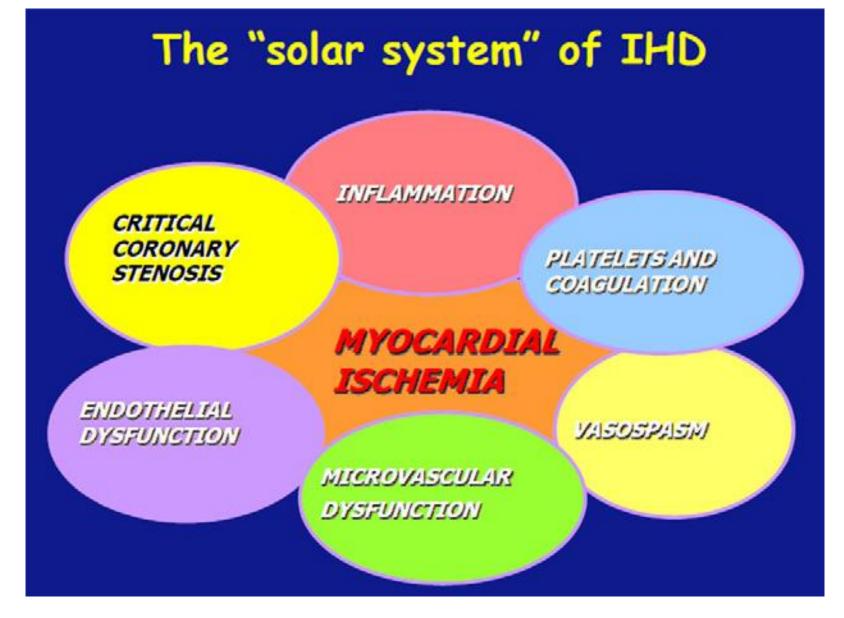
Unmet Needs in the Management of Chronic Stable Angina

Peter Collins

Professor of Clinical Cardiology, Faculty of Medicine, Imperial College London & Royal Brompton Hospital, London, UK



Declaration of Interests

Speaking honoraria from Menarini, Astra Zenica, Bayer, Itamar Medical, Abbott, Ferring Pharmaceuticals

SCHD

Marzilli et al J Am Coll Cardiol 2012;60:951

Question

A 62 year old man has a DES 12 months ago and returns complaining of angina. This occurs in:

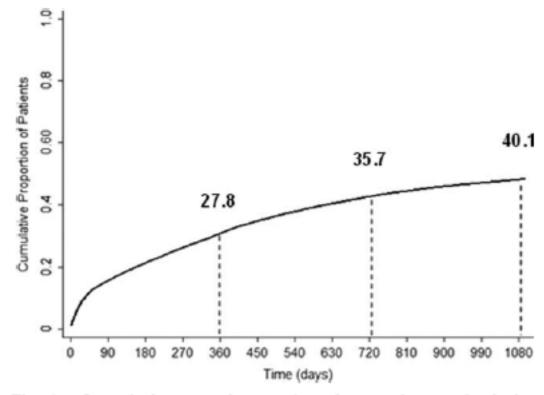
- 1) Less than 5% of patients per year
- 2) In 10% of patients per year
- 3) In 15% of patients per year
- 4) In over 25% of patients per year

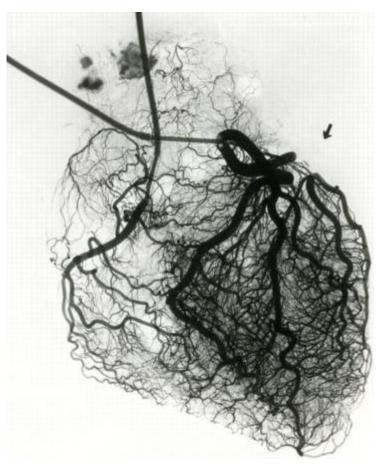
Question

A 62 year old man has a DES 12 months ago and returns complaining of angina. This occurs in:

- 1) Less than 5% of patients per year
- 2) In 10% of patients per year
- 3) In 15% of patients per year
- 4) In over 25% of patients per year

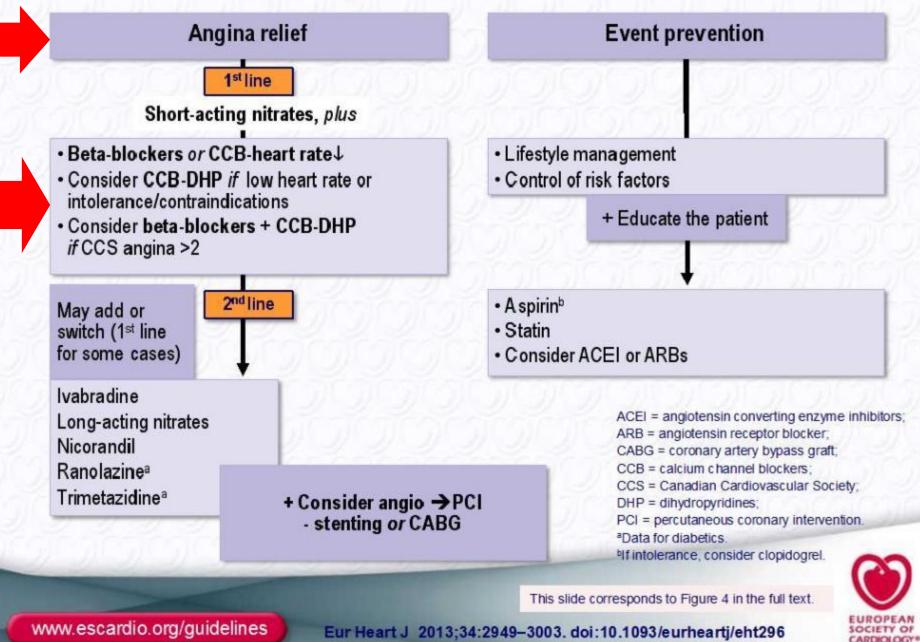
How common?




Fig. 1. Cumulative prevalence of angina or chest pain during 3 years post-PCI.

Ben-Yehuda et al Catheter Cardiovasc Interv 2016; 88:1017

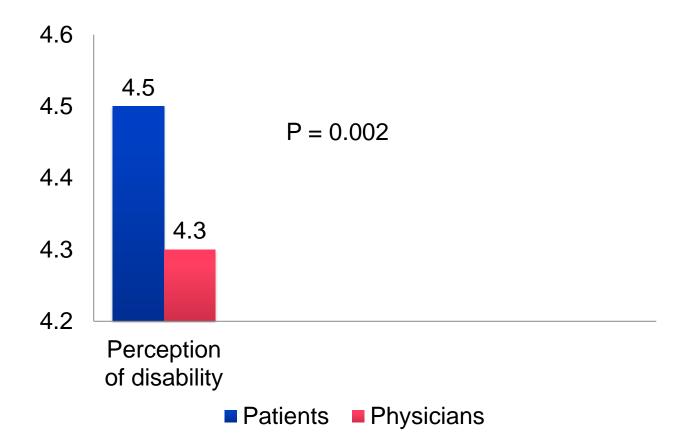
Coronary Microvascular Dysfunction


"Chest pain with normal coronary arteries" or "cardiac syndrome X" has puzzled physicians over the years and continues to represent an unsolved "mystery" for many in clinical practice.

The coronary microcirculation has remained elusive to conventional imaging techniques

Hermann J, Kaski JC, Lerman A. Eur Heart J. 2012

Medical management of patients with SCAD



The continuing burden of stable angina

- 2039 stable angina patients (73% male, age 68)
- 419 cardiologists in 2 years
- 66% prior re-vascularisation
- Stable angina recurred in 59%.
 Despite:
 - Beta blockers 78%
 - LAN 53%
 - CCB 40%
 - Ivabradine 11%
 - Trimetazidine 7%,
 - 50% of 2024 remained symptomatic and 30% \checkmark QoL

Borras et al. The AVANCE registry, Rev. Esp. Cardiol. 2012; 65: 734

QoL assessments

Borras et al. The AVANCE registry, Rev. Esp. Cardiol. 2012; 65: 734

Unmet needs:

- An increasing number of patients are unsuitable for revascularisation because of complicating factors such as age, medical co-morbities and unsuitable coronary anatomy¹
- Despite treatment with conventional agents or revascularisation, or both, many patients remain symptomatic one year after CABG or PCI^{2.3}
- Some patients may not tolerate the upward titration of currently available antianginal drugs because of their depressive effects on blood pressure and heart rate⁴
- A very recent RCT (ORBITA the very first!) seriously questions the efficacy of PCI in SCAD⁵

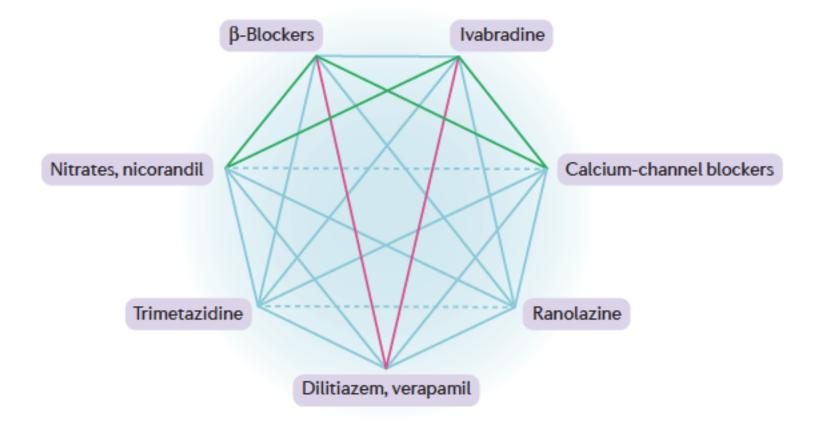
1. Hamm Eur Heart J 2004 (Suppl 1): i2. 2. Serrys et al N Engl J Med 2001: 344; 1117. 3. Holubkov et al Am Heart J 2002: 144; 826. 4. Chaitman et al JAMA 2004: 291; 309. 5. Al-Lamee et al Lancet 2018; 391: 31

First and second line treatment for SCHD

	Mortality	Symptom relief			
		Symptoms	ESC	ACC/AHA	
Beta-blockers	No	Yes	IA	IB	
DHPs	No	Yes	IA	IB	
Non-DHPs	No	Yes	IA	IIaB	
LAN	No	Yes	IIaB	IB	
Ivabradine	No	Yes	IIaB	_	
Ranolazine	No	Yes	IIaB	IIaA	
Nicorandil	No	Yes	IIaB	_	
Trimetazidine	No	Yes	IIbB	-	

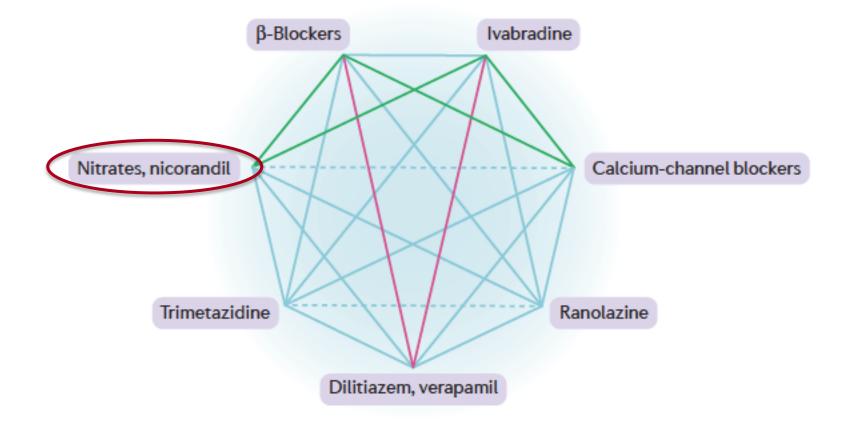
DHPs: Dihydropyridines, LAN: long acting nitrates

Explanation of the recommendations


 Authors of the current ESC guidelines concede that they recommend older drugs as first line treatment because they are cheap, effective, and available everywhere

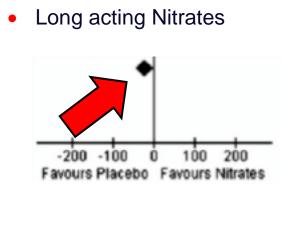
Regarding novel antianginal drugs:

 Stated in the guidelines that there is roughly the same level of evidence as with the 1st line drugs

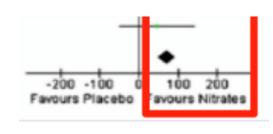

Taylor, New ESC guidelines published on stable coronary artery disease, Eur. Heart J. 34 (2013) 2927

Possible combinations of different classes of antianginal drugs

Ferrari et al Nat Rev Cardiol 2018; 15; 120-132


Possible combinations of different classes of antianginal drugs

Ferrari et al Nat Rev Cardiol 2018; 15; 120-132


Data for long acting nitrates

- No effect
- Our assumption: just because the spray works, the longer-acting pill works is incorrect

	N	trates	01	PB	acebo			Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
ontinuous administ	tration		10000	1.000					
rishman 1989	459	89	11	477	87	9	4.4%	-18.00 [-95.44, 59.44]	
arker 1984	458	165	10	477	192	10	6.0%	-19.00 [-175.91, 137.91]	
adani 1994	482	117	56	463	135	60	9.6%	19.00 (-26.89, 64.89)	
total (95% CI)			77			79	10.0%	7.69 [-30.59, 45.98]	+
erogeneity: Chi#=	0.77, df	= 2 0	= 0.68)	: = 0	%			옷이 가 많았	
st for overall effect	Z=0.39) (P =	69)	5 200	25		•		
mittent adminis	tration						•		
ots 1989	343	73	71	373	71	68	3.6%	-30.00 [-53.94, -6.06]	
er 1995	341	59	11	327	62	11	6.5%	14.00 [-36.58, 64.58]	
ani 1987	273	94	5	314	56	7	5.0%	-41.00 [-133.25, 51.25]	
enberg 1989	404	141	18	402	142	18	4.9%	2.00 [-90.45, 94.45]	
otal (95% CI)			105			104	10.0%	-21.71[-42.25, -1.17]	•
rogeneity: Chi#=	2.80, df	= 3 (F	= 0.42	: = 0	%				
for overall effect	Z= 2.07	(P =	04)	8 N.S	995 -				
		10264	0.82	┛					
								12	and the a the sta
									-200 -100 0 100 200
									Favours Placebo Favours Nitrates

• Short acting Nitrates

	N	itrates		p	facebo			Mean Difference	Mean Difference
Study or Subaroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV. Random, 95% CI
Dassan 1992	307	65	0	234	20	0	0.2%	73.00 [23.96, 122.04]	
Colombo 1985	500	79.3	9	406.6	122.8	9	3.8%	93.40 [-2.10, 188.90]	
Degre 1983	522	144	10	480	174	10	2.1%	42.00 97.99, 181.99]	
DeMots 1989	393	64	67	375	72	68	12.0%	18.00 [-4.97, 40.97]	
Frishman 1989	462	120	11	443	95	11	4.1%	19.00 [-71.45, 109.45]	
kishida 1989	510	113	20	459	124	20	5.4%	61.00 - 22.62, 124.62	
Kosmicki 2004	380.4	109.2	38	251.4	82.8	38	9.0%	129.00 [85.43, 172.57]	
Luke 1987	491	130	11	442	105	11	3.8%	49.00 -49.75, 147.75	
Markis 1979	367	120	9	283	102	9	3.4%	74.00 - 28.89, 176.89	
Martsevich 1996	414	132	12	290	76	12	4.4%	124.00 [37.82, 210.18]	
Milliano 1991	469	158	45	404	124	42	6.9%	66.00 (5.52, 124, 48)	
Parker 1984	460	165	10	415	157	10	2.1%	45.00 -96.16, 186.16]	
Scardi 1985	400	156	15	319.2	87	15	4.1%	188.80 [78.41, 259.19]	
Storstein 1981	430.2	219	12	307.8	166.2	12	1.7%	122.40 33.15, 277.95]	
Thadani 1980	443	125	12	403	107	12	4.0%	40.00 -53.10, 133.10	
Thadani 1987	345	55	9	257	51	9	8.2%	78.00 [29.00, 127.00]	
Thadani 1994	518	108	56	454	135	60	8.8%	64.00 [19.65, 108.35]	
Thompson 1996	840	130	17	750	126	17	4.2%	90.00 (1.17, 178.83)	
Wisenberg 1989	459	128	18	412	161	18	3.9%	47.00 +48.02, 142.02	
Total (95% CD			389			391	100.0%	71.25 [49.29, 93.20]	•
Heterogeneity: Tau ^a	= 907.11	Chi#=	33.82	df = 18 /	P = 0.0	11:12=	17%		- to to to to
Test for overall effect									-200 -100 0 100 20 Favours Placebo Favours Nit

Wei et al. International Journal of Cardiology 2011

Data for long acting nitrates

Arguments against long acting nitrates

Induces endothelial dysfunction in vitro and in animal models

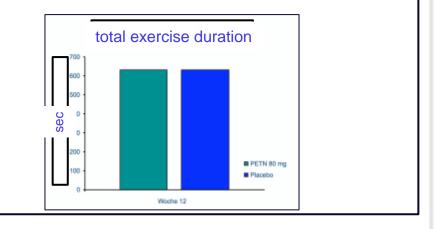
Once Daily Therapy With Isosorbide-5-Mononitrate Causes Endothelial Dysfunction in Humans

Evidence of a Free-Radical-Mediated Mechanism

George R. Thomas, PHD,* Jonathan M. DiFabio, MSC,* Tommaso Gori, MD, PHD,† John D. Parker, MD, FACC*

Toronto, Canada; and Siena, Italy

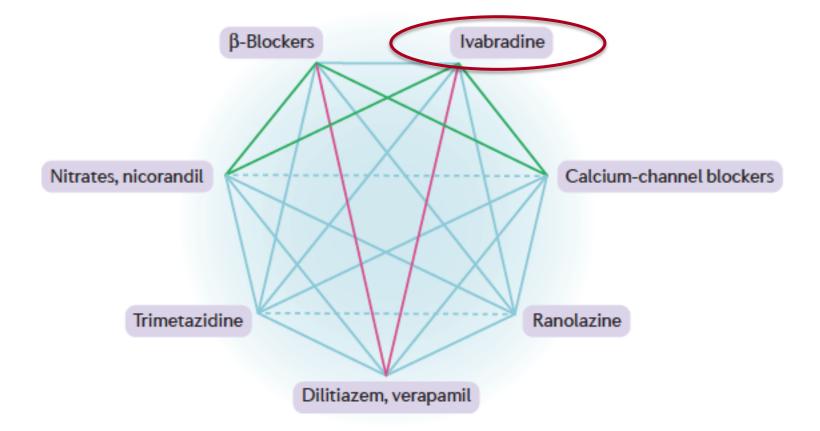
Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 52, No. 4, 2008 158N 0735-1097/08/\$34.00 doi:10.1016/j.jacc.2008.04.019


VIEWPOINT

Nitrate-Induced Toxicity and Preconditioning

A Rationale for Reconsidering the Use of These Drugs

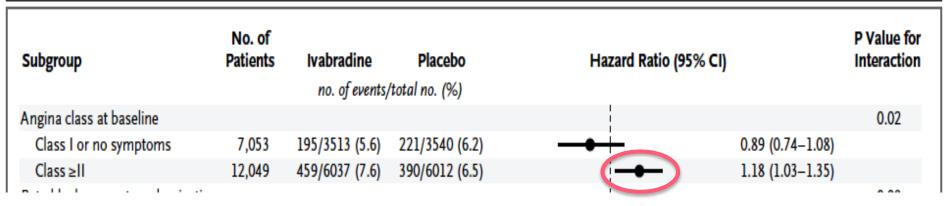
No symptomatic data


Warning

Nicorandil (Ikorel[®]): Advice on the Risk of Serious Ulcerations or Related Events

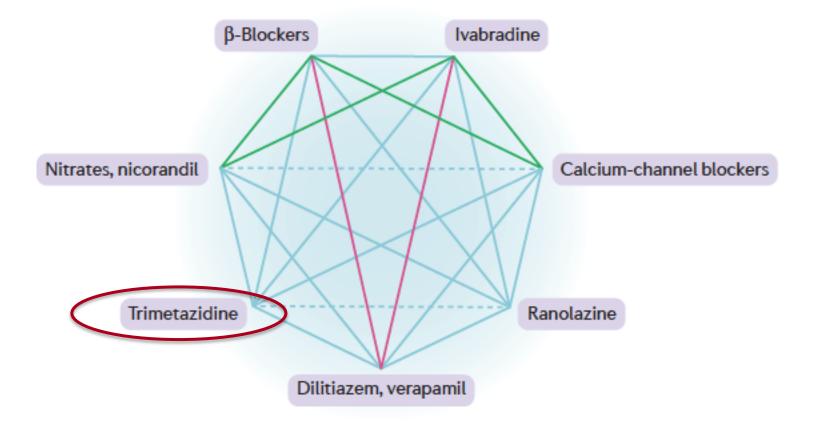

Ikorel Tablets 10mg PA 540/102/1 and Ikorel Tablets 20mg PA 540/102/2

Possible combinations of different classes of antianginal drugs



Ferrari et al Nat Rev Cardiol 2018; 15; 120-132

Increased risk of ivabradine


- Prognostic relevance in heart failure
- Good antiangianal potential
- Tested in >17000 patients with CAD
- Not safe

Significant increase in the primary endpoint – death from cardiovascular causes or nonfatal myocardial infarction.

Fox et al N Engl J Med. 2014; 371: 1091-9

Possible combinations of different classes of antianginal drugs

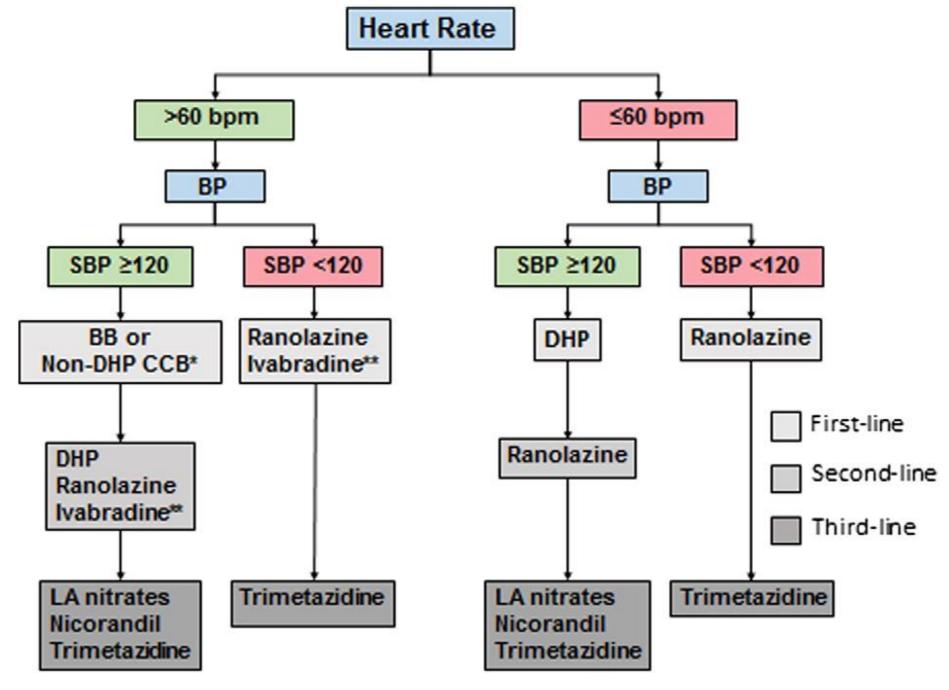
Ferrari et al Nat Rev Cardiol 2018; 15; 120-132

Cochrane Database of Systematic Reviews

Trimetazidine for stable angina (Review)

Ciapponi A, Pizarro R, Harrison J

Trimetazidine for stable angina


Agustín Ciapponi¹, Rudolf Pizarro², Jeff Harrison³

Trimetazidine

- 1300 subjects in randomised clinical trials
- AUTHORS'CONCLUSIONS
- Implications for practice:
- This meta-analysis confirms the modest efficacy of trimetazidine in the treatment of stable angina, compared with placebo. The data available are too sparse to make recommendations for use of trimetazidine both as monotherapy, or in a combination with conventional anti-anginal agents. Trimetazidine may result in fewer withdrawals due to adverse events than placebo or other anti-anginal agents but robust data are lacking
- Proven poor efficacy

Preferred drugs (listed alphabetically)

Intolerance to initial therapy	DHP's, Ivabradine, LA Nitrates, Nicorandil, Ranolazine, Trimetazidine.
Low HR	DHP's, LA Nitrates, Nicorandil, Ranolazine, Trimetazidine
Low BP	Ivabradine, Ranolazine, Trimetazidine
AF	β-blockers (rate control), Non-DHP's (rate control), Ranolazine
CHF	β-blockers, Ivabradine, possibly Nitrates
Microvascular ischaemia	β-blocker, CCB, Nicorandil, Ranolazine
Diabetes Mellitus	Ranolazine, Trimetazidine, Vasodilating β -blockers
COPD	β-blockers (cardio-selective), DHP's, Ivabradine, LA Nitrates, Nicorandil, Ranolazine, Trimetazidine

Manolis et al Int J Cardiol 220 (2016) 445-453

A new drug class:

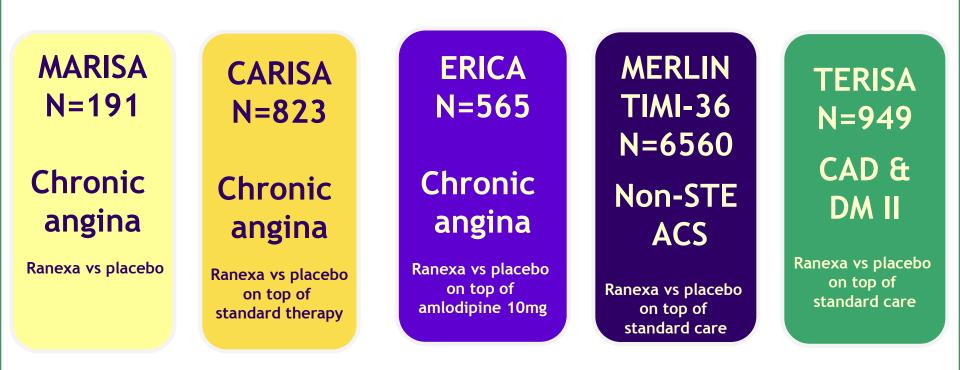
A late sodium current inhibitor

New Drug Class

Ranolazine for chronic stable angina

David T Nash, Stephen D Nash

Lancet 2008; 372: 1335-41


Journal of the American College of Cardiology © 2006 by the American College of Cardiology Foundation Published by Elsevier Inc.

EDITORIAL COMMENT

Ranolazine: Augmenting the Antianginal Armamentarium*

John A. Cairns, MD, FRCPC, FACC Vancouver, Canada

Ranolazine: Main Clinical Studies

ROLE N=746 Chronic angina Long Term Safety

Morrow DA, et al. JAMA. 2007;297:1775-1783 J Am Coll Cardiol 2004;43:1375- 82 Chaitman BR, et al. JAMA. 2004;291:309-316 Stone PH, et al. J Am Coll Cardiol 2006;48:566-575.

N=9,834

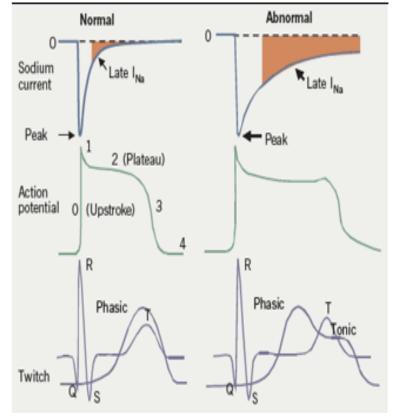
Reference on CCB's in the American Guidelines

- Frishman WH, Sica DA. Calcium Channel Blockers. In: Frishman WH, Sonnenblick EH, Sica DA, editors. Cardiovascular Pharmacoherapeutics. New York: McGraw-Hill; 2003.
- Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med. 1999;341:1447–57.
- Ezekowitz MD, Hossack K, Mehta JL, et al. Amlodipine in chronic stable angina: results of a multicenter double-blind crossover trial. Am Heart J. 1995;129:527–35.
- Boman K, Saetre H, Karlsson LG, et al. Antianginal effect of conventional and controlled release diltiazem in stable angina pectoris. Eur J Clin Pharmacol. 1995;49:27–30.
- Brogden RN, Benfield P. Verapamil: a review of its pharmacological properties and therapeutic use in coronary artery disease. Drugs. 1996;51:792–819.
- Parmley WW, Nesto RW, Singh BN, et al. Attenuation of the circadian patterns of myocardial ischemia with nifedipine GITS in patients with chronic stable angina. N-CAP Study Group. J Am Coll Cardiol. 1992;19:1380–9.

Review

Review

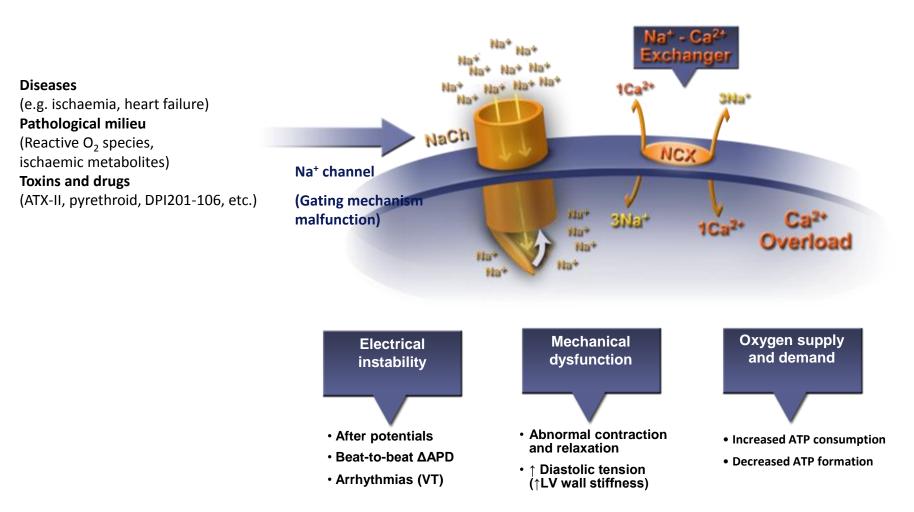
n=103; 2 arms of treatment; 77 days on treatment. Holter


n=41; 2 arms of treatment; ? Days on treatment. Holter, QoL

Review

n=207; 2 arms of treatment; 70 days on treatment. Holter

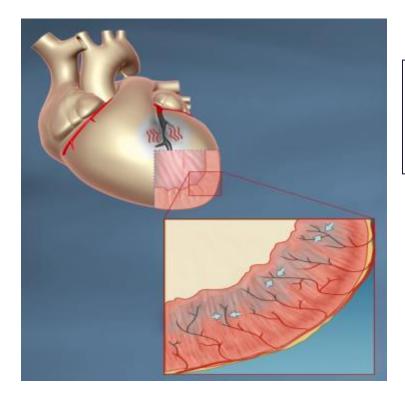
The sodium current


 The sodium current peaks at the onset of the action potential and continues throughout systole, with a so-called late component of late I_{Na}, which decays gradually.

The cardiac sodium channel current.

Elaborated from: Camm J. Br J Cardiol 2008;15(Suppl 1):S5-S7.

The sodium channel



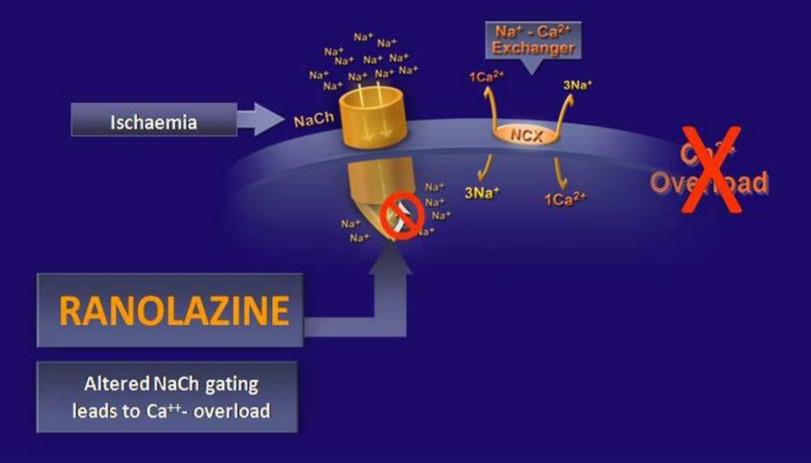
APD: action potential duration; VT: ventricular tachycardia.

Elaborated from:

- 1. Saint DA. Br J Pharmacol 2008;153(6):1133-42;
- 2. Belardinelli L, et al. Heart 2006;92(Suppl IV):iv6-14.

An increase in INa impairs diastolic relaxation, increases MVO2 and reduces coronary O2 supply

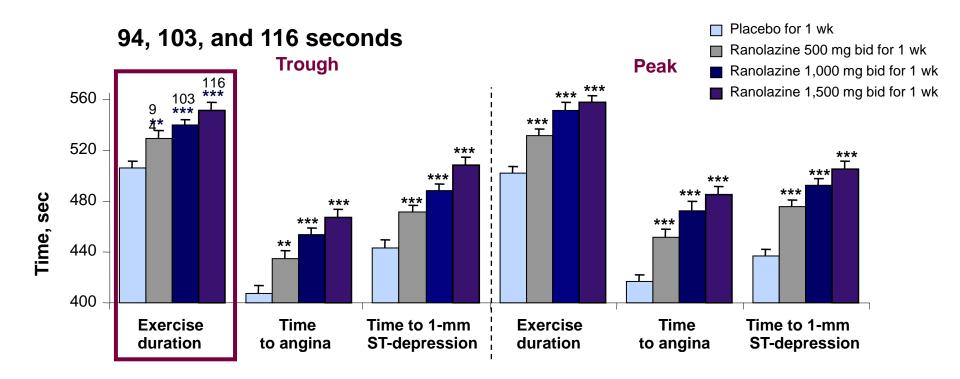
Na⁺ and Ca⁺⁺ overload Increased diastolic wall tension:


- Increases MVO₂ (myoc. O2 consumption)
- Compresses intramural small vessels
- Reduces endocardial blood flow

Worsens ischaemia and angina

- 1. Saint DA. Br J Pharmacol 2008;153(6):1133-42
- 2. Hasenfuss G, et al. Clin Res Cardiol 2008;97:222-6.
- 3. Shryock JC, et al. Br J Pharmacol 2008:153;1128-32.

Ranolazine is proposed to mediate its antianginal effect by reducing the flow of the late sodium current in cardiac cells

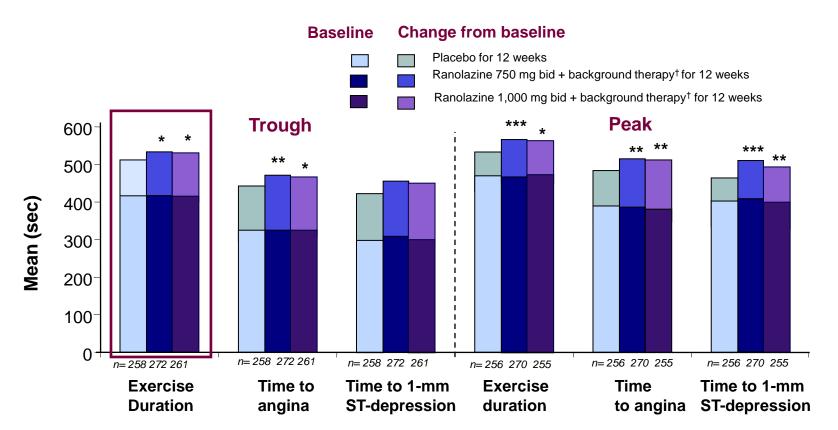

Adapted from Zerumsky K & McBride BF. Am J Health Syst Pharm 2006;63:2331-2338

What is clinically relevant

- What parameters/endpoints are important when assessing clinical trials in angina?
 - Exercise time
 - Time to ischaemia
 - Angina frequency
 - GTN usage
 - QoL

1. Borer et al Circulation 2003; 107: 817; 2. Chaitman et al JAm Coll Cardiol 2004; 43: 75

MARISA: efficacy on exercise parameters

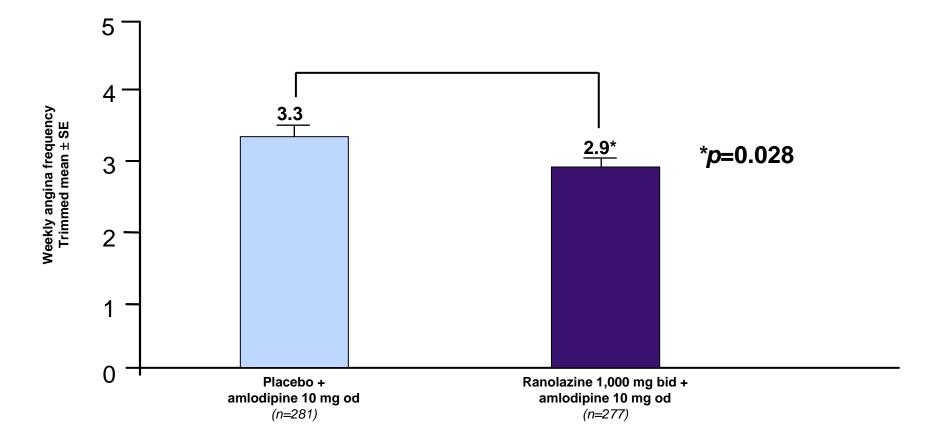


n=175 pts who completed three of the four treatment periods. **p≤0.005 vs. placebo ; ***p<0.001 vs. placebo

Note: in the European Union ranolazine is recommended, at a maximum dose of 750 mg bid, as add-on therapy for patients with stable angina.

Modified from: Chaitman BR, et al. *J Am Coll Cardiol* 2004;43:1375-82 (from Tab II).

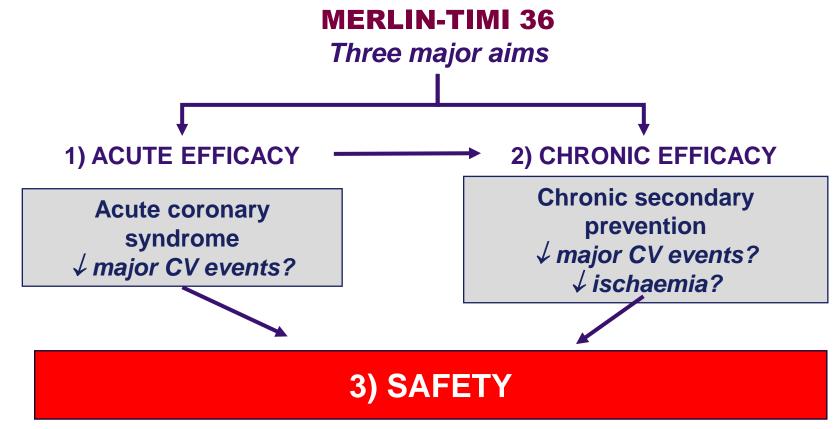
CARISA: efficacy on exercise treadmill parameters after 12 weeks of treatment


Change from baseline: *p<0.05; **p \leq 0.01 ***p \leq 0.001 vs. placebo n=791, ITT/LOCF; LS means \pm SE.

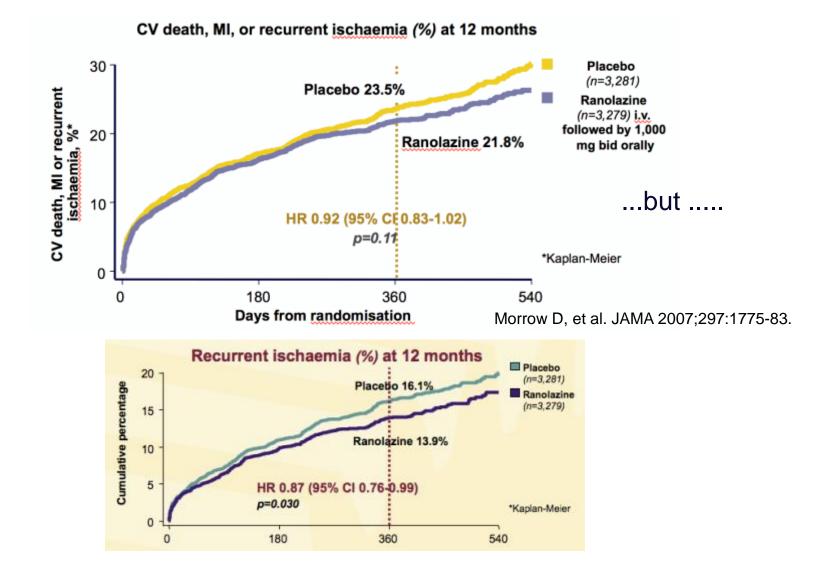
[†]Background therapy: atenolol 50 mg od or amlodipine 5 mg od or diltiazem 180 mg od.

Note: in the European Union ranolazine is recommended, at a maximum dose of 750 mg bid, as add-on therapy for patients with stable angina.

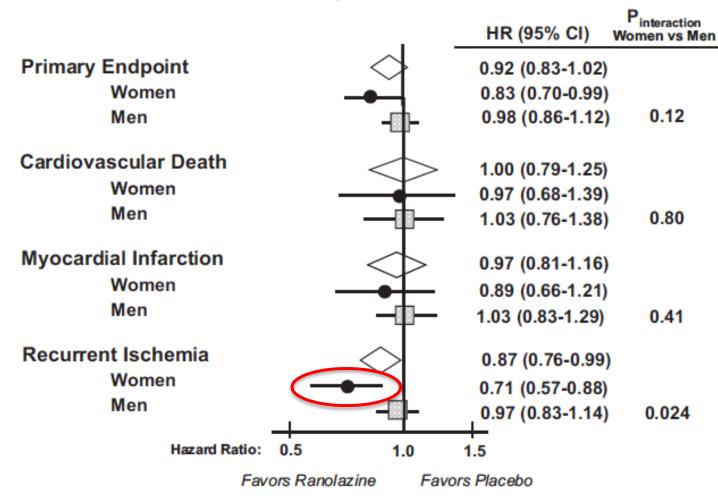
Modified from: Chaitman BR, et al. *JAMA*. 2004;21;291(3):309-16. (from Tab II).


ERICA: effect on angina frequency

Note: in the European Union ranolazine is recommended, at a maximum dose of 750 mg bid, as add-on therapy for patients with stable angina.


Adapted from: Stone PH, et al. *J Am Coll Cardiol.* 2006;48(3):566-75

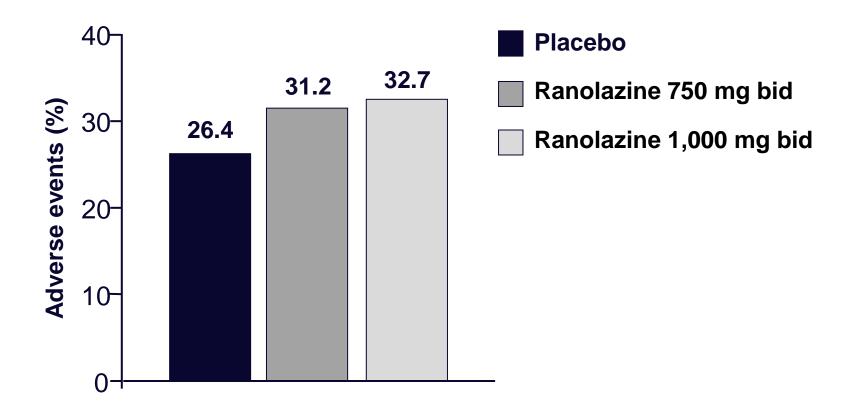
At the request of the FDA safety in acute coronary syndrome MERLIN-TIMI 36


Morrow D, et al. JAMA 2007;297:1775-83.

MERLIN-TIMI 36: primary efficacy end-point

MERLIN-TIMI 36

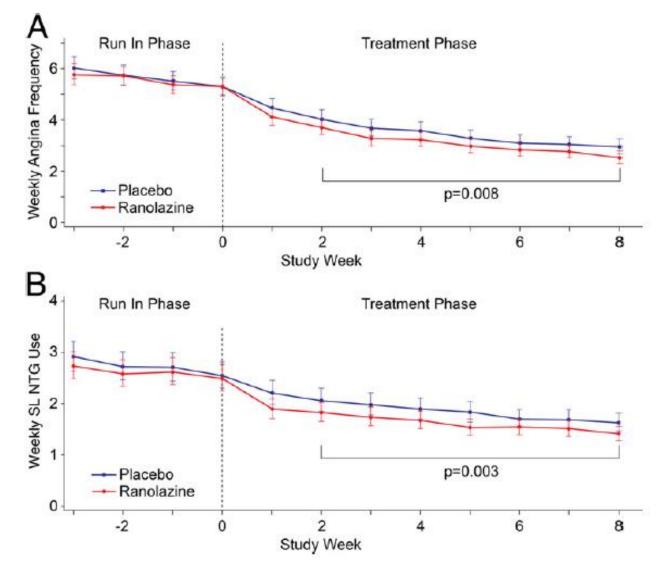
Treatment Specific Outcomes



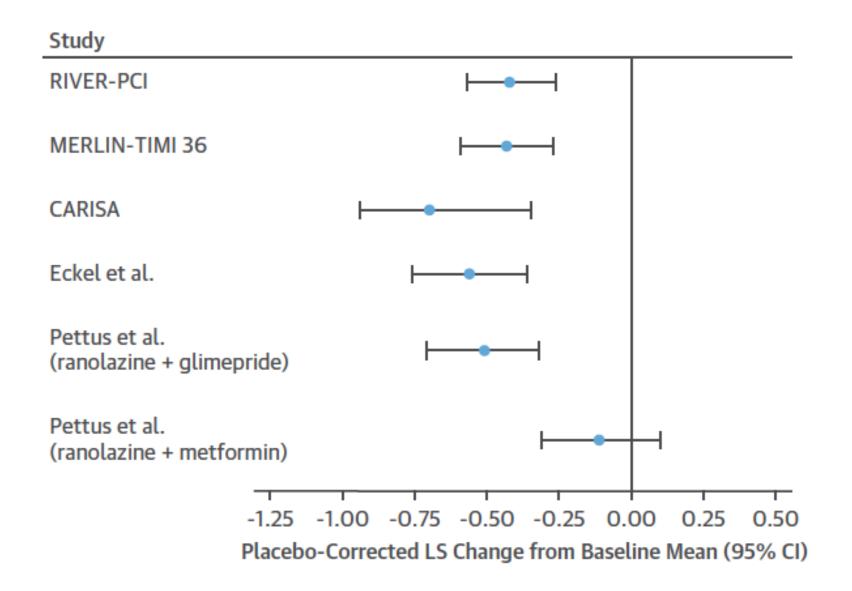
MERLIN-TIMI 36: subgroup analysis patients with ACS and chronic angina

Performance on ETT at 8 months p=0.002 p=0.003 p=0.002 520 514 509 508 510 500 Time (seconds) 480 420 420 420 482 479 477 460 450 **Total duration** Time to 1 mm-segment depression Time to onset of angina Placebo (n=1,173) Ranolazine i.v. followed by 1,000 mg bid orally (n=1,190)

Wilson SR, et al. J Am Coll Cardiol 2009;53(17):1510-6.


Very few adverse events

The most common dose-related adverse events were constipation, dizziness, nausea, asthenia.


Modified from: Chaitman BR, et al. JAMA 2004;291:309-16.

TERISA – Type 2 diabetes Evaluation of Ranolazine In Subjects with Angina pectoris

Kosiborod et al J Am Coll Cardiol 2013;61:2038–45

Effect of Ranolazine on HbA1C in Patients with DM

Beneficial effect of Ranolazine in patients with microvascular angina (MVA)

The results of four trials show that, among patients with MVA, those with reduced CFR and evidence of exercise-induced myocardial ischaemia may have appreciable benefits from ranolazine administration

Crea and Lanza EHJ 2016 37, 1514

- Mehta et JACC Cardiovasc Imaging 2011; 4:514–522 (n=20; 20F)
- Villano et al Am J Cardiol 2013; 112:8-13 (n=15; 3M, 12F)
- Tagliamonte et al Echocardiography 2015; 32:516–251 (n=58; 39M, 19F)
- Bairey Merz et al Eur Heart J 2016; 37:1504 1513 (n=128; 6M,122F)

Dosing regimen - Ranolazine

Start: 375 mg twice daily

2-4 weeks 500 mg twice daily

2-4 weeks 750 mg twice daily

Which patient groups for Ranolazine ?

Continuing angina despite first line therapy with beta blockers and/or CCB's – proven highly effective ADD ON (no vascular effects)

Chronic angina high risk revascularisation or after successful revascularisation

Diabetes with successful revascularisation or with non-obstructive CAD and diabetic microvascular dysfunction

Angina in the presence of CAD and AF

Angina normal coronary arteries (MVA) – highly effective

Elderly with chronic ischaemia multiple risk factors and/or intolerant to or ineffective therapy

Angina with contraindication to other anti-anginals

Key takeaway messages

- Ranolazine is a first in class drug
- Novel mode of action: ischemia treatment at the cardiomyocyte
- Suitable for all causes of ischemia (not only coronary artery disease)
- Large database (N>9,500) in well conducted RCT's
- Well tolerated
- Safe (positive in subgroups: Angina pectoris, Diabetes)
- Very solid and strong symptomatic data
 - Anti-ischemia
 - Anti-Angina: less Angina, increase in exercise capacity
- Effective in monotherapy or in combination with beta-Blocker or CCB
- Positive metabolic profile: reduction of HbA1c
- No effect on heart rate or blood pressure

Conclusions

- Despite best efforts with OMT and revascularization about 30% of patients with SCAD continue to have symptoms independent of treatment, resulting in decreased QoL
- Guidelines give guidance
- There is the potential for management improvement
- Co-morbidities plus simple clinical assessment of heart rate and systolic BP may enable better choice of therapy
- Inadequate control of symptoms increases healthcare costs
- The use of the new novel non-vascular anti-ischaemic therapy, Ranolazine increases the possibility of optimal anginal symptomatic control

Royal Brompton Hospital, London

Thank You!

Ranolazine: contraindications

- Hypersensitivity to the active substance or to any of the excipients
- Severe renal impairment (creatinine clearance <30 ml/min)
- Moderate or severe hepatic impairment
- Concomitant administration of potent CYP3A4 inhibitors (e.g. itraconazole, ketoconazole, voriconazol, posaconazol, HIV protease inhibitors, clarithromycin, telithromycin, nefazodone)
- Concomitant administration of Class Ia (e.g. quinidine) or Class III (e.g. dofetilide, sotalol) antiarrhythmics other than amiodarone

Ranolazine European SmPC. Revised April 2014.

Conclusions

- Despite best efforts with OMT and revascularization about 30% of patients with SCAD continue to have symptoms independent of treatment, resulting in decreased QoL
- Guidelines give guidance
- There is the potential for management improvement
- Routine clinical practice should include regular assessment of the adequacy of stable angina control (? STAR chart)
- The use of a simple checklist would facilitate assessment of disease burden
- Inadequate control of symptoms increases healthcare costs
- The use of the new novel non-vascular anti-ischaemic therapy, Ranolazine increases the possibility of optimal anginal symptomatic control